Câu hỏi Tự Luận

1. Chứng minh rằng đường thẳng nối trung điểm hai đường chéo |

Câu hỏi:

1. Chứng minh rằng đường thẳng nối trung điểm hai đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại một điểm.

2. Dùng định lí trên chứng tỏ rằng nếu một tứ giác các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành.

Bạn đang xem: 1. Chứng minh rằng đường thẳng nối trung điểm hai đường chéo |

Xem lời giải

Trả lời:

1. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA; I, K là trung điểm của BD, AC.

Tứ giác EFGH có EF//GH(//AC), 

EF = GH =12AC

nên EFGH là hình bình hành. Chứng minh tương tự EIGK là hình bình hành, do đó FH và IK cùng đi qua trung điểm cùng EG.

2. Gọi O là giao điểm của hai đường chéo và M là trung điểm của IK. Nếu EG, FH cắt nhau tại O thì theo câu 1), M trùng với O, do đó I và K trùng O. Tứ giác ABCD có O là trung điểm của hai đường chéo nên là hình bình hành.

Đăng bởi: Phòng Giáo Dục và Đào Tạo Tân Phú

Đăng bởi: Câu hỏi Tự Luận

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!